
A Closed-Form Solution for Coarse Registration of Point
Clouds Using Linear Features
Fangning He, Ph.D., S.M.ASCE1; and Ayman Habib2

Abstract: This paper presents a closed-form procedure for the coarse registration of three-dimensional (3D) point clouds using automatically
extracted linear features, which have been manually matched. Corresponding linear features are defined by nonconjugate endpoints that do not
necessarily define compatible direction vectors. Because the point clouds could be derived from different sources (e.g., laser scanning data
sets and/or photogrammetric point clouds that are referenced to arbitrary reference frames), the proposed procedure estimates the scale, shift,
and rotation parameters that relate the reference frames of these data sets. The proposed approach starts with a quaternion-based procedure for
initial estimation of the transformation parameters using the minimal number of required conjugate line pairs (i.e., two noncoplanar linear fea-
tures from each point cloud). The initial estimate of the transformation parameters is then used to ensure the compatibility of the direction vec-
tors of the involved linear features. The modified direction vectors together with the endpoints of the linear features are used for deriving a
better estimate of the transformation parameters. Experimental results from both simulated and real data sets verified the feasibility of the pro-
posed procedure in providing good quality for the approximate parameters of the transformation parameters for point-based fine registration
procedures.DOI: 10.1061/(ASCE)SU.1943-5428.0000174.© 2016 American Society of Civil Engineers.

Introduction

Over the last decade, there has been an increasing demand for the
utilization of three-dimensional (3D) models in various applica-
tions, such as industrial site modeling, 3D documentation of histori-
cal monuments, urban planning, telecommunications, and different
civilian and military needs. Currently, 3D reconstruction/represen-
tation of objects of interest can be achieved through either active or
passive remote sensing systems. Active sensors, such as laser scan-
ners, directly provide precise and dense point cloud, which is prop-
erly scaled, along the scanned objects. In spite of the high point den-
sity of laser scanning data, break lines are not usually well defined
by such data. Moreover, the derived point cloud usually lacks spec-
tral information (especially when dealing with data collected by
laser scanners onboard mobile platforms). On the other hand, pas-
sive sensors, such as digital frame cameras, can be incorporated for
3D reconstruction while providing spectral attributes for the derived
coordinates. Such semantic attributes would allow for the derivation
of better and more reliable information pertaining to the recon-
structed objects. Moreover, the images can be used for accurate der-
ivation of break lines. However, the main challenge in deriving 3D
information from passive sensors is feature matching in overlapping
imagery (i.e., the automated identification of conjugate features in
the involved images). Given the abovementioned characteristics of
derived 3D point clouds from active and passive sensors, the
research and professional communities have advocated the integra-
tion of point clouds from these data-acquisition modalities (González-
Aguilera et al. 2009). Effective integration of derived data from

these modalities is contingent on their alignment relative to a
common reference frame, which is known as the registration
problem.

According to Habib and Alruzouq (2004), a comprehensive
registration procedure should address four issues: (1) the transfor-
mation parameters that relate the reference frames of the involved
data sets; (2) the registration primitives, which are the conjugate
features that can be identified from the different data sets and used
for the estimation of transformation parameters; (3) the similarity
measure, which is the mathematical constraint that describes the
coincidence of conjugate features after the registration process; and
(4) the matching strategy, which represents the controlling frame-
work for the automatic registration process. To date, there has been
an extensive body of research for the registration of derived data
sets from passive and active sensors. In this regard, two different
approaches can be adopted for the registration of two-dimensional
(2D) image-based and 3D laser point clouds. The first approach is
based on a 2D-to-3D alignment strategy, in which the registration is
achieved using identified features in the 2D images and 3D point
cloud in question (Ding et al. 2008; Habib et al. 2004; Mastin et al.
2009). Automated identification of corresponding features in 2D
and 3D data sets is quite difficult. The second approach is based on
a 3D-to-3D registration strategy. More specifically, a point cloud
can be generated from 2D imagery through the automated identifi-
cation of conjugate points in overlapping imagery. Then the regis-
tration problem is solved through the alignment of the image-based
and laser scan point clouds. The generation of a 3D point cloud
from 2D images can be achieved through one of two strategies. In
the first strategy, the interior orientation parameters (IOPs) of the
utilized camera as well as the exterior orientation parameters
(EOPs) of the involved imagery are assumed to be known. The
IOPs of the utilized camera can be obtained through a camera cali-
bration exercise. The EOPs, on the other hand, can be derived
through either a direct or indirect georeferencing procedure.
Following the estimation of IOPs and EOPs, conjugate points are
identified in the overlapping images using image matching techni-
ques. Then, the image coordinates of conjugate points are manipu-
lated through a simple intersection procedure using the available

1Student, Lyles School of Civil Engineering, Purdue Univ., West
Lafayette, IN 47906 (corresponding author). E-mail: he270@purdue.edu

2Professor, Lyles School of Civil Engineering, Purdue Univ., West
Lafayette, IN 47906. E-mail: ahabib@purdue.edu

Note. This manuscript was submitted on November 30, 2014;
approved on November 23, 2015; published online on February 3, 2016.
Discussion period open until July 3, 2016; separate discussions must be
submitted for individual papers. This paper is part of the Journal of
Surveying Engineering, © ASCE, ISSN 0733-9453.

© ASCE 04016006-1 J. Surv. Eng.

 J. Surv. Eng., 04016006 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Pu
rd

ue
 U

ni
ve

rs
ity

 L
ib

ra
ri

es
 o

n 
02

/0
8/

16
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

http://dx.doi.org/10.1061/(ASCE)SU.1943-5428.0000174
mailto:he270@purdue.edu
mailto:ahabib@purdue.edu


IOPs and EOPs for the derivation of the 3D coordinates of the corre-
sponding object points (Kraus 2007). The second strategy is intro-
duced by the computer vision community and is known as structure
from motion (SfM). This strategy simultaneously estimates the
EOPs of the involved images and drives the 3D coordinates of cor-
responding features in those images (Huang and Netravali 1994). In
the absence of control information, SfM-based point clouds are usu-
ally referred to an arbitrary reference frame. It can be argued that
3D-to-3D registration approach has several advantages: (1) auto-
mated identification of conjugate features in 2D images and 3D
point clouds is more complex and less reliable than the identifica-
tion of conjugate features in 3D data sets; (2) modern dense
image-matching techniques, such as the semiglobal image match-
ing (Hirschmuller 2005), are capable of generating 3D point
clouds from imagery with large overlap and side lap ratios; and
(3) 3D-to-3D registration is more general, because it can be used
for the registration of any 3D data sets regardless of their origin
(e.g., image-based and/or laser scanning data derived from terres-
trial and/or airborne platforms). Therefore, this research is focus-
ing on 3D-to-3D data registration.

The registration of 3D data sets involves the estimation of the
3D Helmert transformation parameters (i.e., scale factor, three
translations, and three rotation angles) relating the reference frames
of the different point clouds. When dealing with two point clouds
that have been captured by well-calibrated laser scanners, the scale
factor does not have to be estimated, because it is implicitly defined
by the measured ranges (Al-Durgham and Habib 2014). To derive
the 3D Helmert transformation parameters, either a closed-form or
nonclosed-form solution can be adopted. Different from the con-
ventional approach (Slama et al. 1980; Wolf and Dewitt 2000),
which is based on a nonlinear least-squares solution, the closed-
form solution does not require initial approximate values for the
unknown transformation parameters (Horn 1987). Depending on
the accuracy of the estimated transformation parameters, registra-
tion procedures could be classified as either coarse or fine registra-
tion techniques (Matabosch et al. 2005). Coarse registration techni-
ques are usually used to establish rough alignment between the
involved point clouds. Fine registration, on the other hand, starts
from coarsely aligned point clouds to achieve more precise align-
ment of the involved data sets.

The registration primitives could be points, lines, or planar fea-
tures. The point-based registration could be using point targets, indi-
vidual points within the data, or key points that have characteristic
attributes. Target-based registration uses artificial targets, which are
set up within the field of view of the data-acquisition systems and
designed to facilitate their automatic identification from the derived
point clouds. Using targets requires careful manual interaction to
make sure that the setup targets are capable of providing precise esti-
mate of the transformation parameters (e.g., ensuring that the targets
are well distributed within the collected data). Site accessibility as
well as safety issues might limit the use of targets as the registration
primitives.Moreover, targets might not be the appropriate primitives
for the registration of data sets that are acquired at different times,
because one cannot guarantee that the targets are set up at the same
locations. Other point-based procedures use the entirety of the avail-
able points within the data sets to estimate the transformation param-
eters relating these data sets. The iterative closest point (ICP) is an
example of the most commonly used procedure in this category
(Besl and McKay 1992) in which the transformation parameters are
iteratively refined by generating pairs of corresponding points and
minimizing point-to-point distances. Because of the irregular nature
of point clouds, point-to-point correspondence cannot be always
assumed. Therefore, different variants of the ICP have been

introduced for such situations. For example, the iterative closest
patch (ICPatch) uses points in one point cloud and triangular patches
in another point cloud as the registration primitives (Habib et al.
2010). Instead of minimizing the point-to-point distance, the
ICPatch algorithm is implemented by minimizing the sum of the
squared normal distances between conjugate point-to-patch pairs.
An evaluation of various variants of the ICP has been conducted by
Rusinkiewicz and Levoy (2001). In their paper, the classical ICP
algorithm was assumed to be composed of six different stages.
Then, the ICP variants were classified into different categories as
modification to one or more of these stages. The ICP and its variants
have been proven to be accurate (i.e., they constitute the bulk of fine
registration approaches). However, these approaches require an ini-
tial rough alignment of the involved point clouds to establish the cor-
respondence between a point in one point cloud and its nearest point
in the other one. Key-point–based registration starts with applying
detectors that identify point features with multiple descriptors. The
detected points in the involved point clouds are then matched using
their descriptors (e.g., the distance between the descriptor attributes
of these points). Kim and Hilton (2013) investigated the perform-
ance of four different key-point–based registration approaches, such
as spin images, 3D shape context (SC), signature of histograms of
orientations (SHOTs), and fast point feature histograms (FPFHs).
Chen et al. (1998) proposed a RANSAC (Fischler and Bolles
1981)-based exhaustive search method for identifying corre-
sponding key points, which are then used for the alignment pro-
cess. The key-point–based registration techniques are usually
time-consuming, because the key-point extraction and matching
processes are computationally expensive.

Linear and planar features have been repeatedly used as registra-
tion primitives for coarse alignment of point clouds. Jaw and
Chuang (2008) introduced a mathematical model for line-based and
plane-based point cloud registration. Experimental results from this
work showed that linear and planar primitives yield reliable esti-
mates of the transformation parameters. Stamos and Leordeanu
(2003) used fitted planes and their intersections for the registration
of two laser scans. This approach would fail if the involved scenes
do not contain a sufficient number of 3D lines and planes. Yao et al.
(2010) developed a RANSAC-based algorithm to register laser scans
in a pairwise fashion, in which groups of linear and planar features
are used as the registration primitives. However, this algorithm is
sensitive to the presence of repetitive patterns and the registration of
outdoor scenes usually failed. Al-Durgham and Habib (2014) pro-
posed an association-matrix–based sample consensus approach for
the registration of terrestrial laser scans using linear features. It has
been demonstrated that compared with the traditional RANSAC
algorithm, the association-matrix–based approach is capable of pro-
ducing more correct results in fewer trials. Their approach is based
on a nonlinear solution for the transformation parameters while
assuming a unit scale factor. Han (2010) proposed a noniterative so-
lution to estimate similarity or affine transformation parameters
using vector geometry from hybrid geometric features (including
points, lines, and planes). By performing a numerical analysis, the
author has demonstrated that the estimated transformation parame-
ters through the proposed approach are at the same level of quality
when using the classic least-squares approach, but with an
improved computational performance in real-field applications.
Additional improvement of this approach is conducted by Han and
Jaw (2013). Along with hybrid geometric features, the improved
approach uses point clusters to estimate the transformation parame-
ters. Thus, it is capable of providing a more flexible parameter esti-
mation when dealing with similarity transformation models.
However, this approach assumes compatible directions of utilized
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vectors. In addition to linear and planar features, circular and spheri-
cal features have been investigated. For example, Chen and Stamos
(2006) proposed the use of circular features, and Franaszek et al.
(2009) used locally fitted 3D spheres. However, both circular and
spherical features are only available in some specific scenes.
Comparing the different types of features that could be used for
point cloud registration, one can argue that linear features are more
convenient for the following reasons (Al-Durgham and Habib
2014): (1) linear features are the most common primitives that
would exit in both indoor and outdoor scenes, such as urban scenes
and industrial sites; (2) the linear feature representation scheme
could be easily chosen to simplify the registration process; (3) linear
features can be identified in photogrammetric and laser data; and
(4) compared to planar features, fewer lines are required for the
registration process.

The objective of this research is the development of a closed-
form procedure for coarse registration of point clouds that are
derived from either active or passive imaging sensors using linear
features. To illustrate the proposed procedure, the paper starts
with the utilized approaches for point cloud generation from over-
lapping images and the automated derivation of linear features.
Then, the mathematical details for using manually identified con-
jugate linear features for closed-form estimation of the transfor-
mation parameters are discussed. Experimental results using both
simulated and real data sets are then presented. Finally, the paper
introduces the drawn conclusions as well as the recommendations
for future work.

Methodology

In this paper a closed-form approach is developed for the coarse
registration of point clouds that are derived from either active or
passive imaging sensors. The developed approach has the follow-
ing characteristics: (1) it is based on manually identified conju-
gate linear features, which have been automatically extracted
from the point clouds; (2) conjugate linear features are defined by
noncorresponding endpoints that do not necessarily define com-
patible directions; and (3) the proposed procedure does not
require initial values for the transformation parameters (shifts,
rotation angles, and scale) relating the reference frames for the
point clouds.

Image-Based Point Cloud Generation

Passive sensors, mainly in the form of digital frame camera, still
remain the most complete, economical, flexible, and widely used
approach for the generation of a point cloud from acquired images
(Remondino and El-Hakim 2006). In this research, a two-step pro-
cedure is adopted for the image-based point cloud generation pro-
cess. In the first step, a fully automated approach, which was devel-
oped by He and Habib (2014), is used for the recovery of the EOPs
of the acquired images. This approach starts with a linear approach
for the estimation of the relative orientation parameters (ROPs)
relating all the stereo pairs within the available images using Scale-
Invariant Feature Transform (SIFT)-based conjugate points. The
ROPs are then used in an incremental augmentation approach for
evaluating the EOPs of the imagery in a local coordinate system. In
this regard, it should be noted that the position, orientation, and
scale of the established reference frame depends on the seed image
triplet used in the image augmentation process. In the second step,
the semiglobal dense matching algorithm (Gehrke et al. 2010;
Hirschmuller 2005) is implemented to generate a dense point cloud.

Linear Feature Extraction

One of two approaches can be used for the derivation of 3D lin-
ear features from the image-based and laser scanning point
clouds:
1. Linear features can be indirectly derived through planar feature

segmentation and intersection of neighboring planes (Lari et al.
2011). Because the intersection procedure provides infinite
lines, the endpoints of the linear features are established
through projection of the point cloud within a given buffer
around the derived intersection onto the infinite linear feature.

2. Linear features can be directly derived from point clouds. In
this work, a region-growing approach is used (Lari and Habib
2013). Principal component analysis (PCA) is used to identify
seed regions that belong to potential linear features. Then,
neighboring points that belong to the same feature are sequen-
tially identified/incorporated by examining the normal distance
between those points and the mathematical model associated
with the seed regions.
Using either one of these approaches, the automatically

extracted linear features are represented by their endpoints. In this
research, conjugate linear features are manually identified. In this
regard, it should be noted that the endpoints representing conjugate
linear features are not corresponding to each other and do not neces-
sarily define compatible direction vectors. The next section pro-
vides the mathematical details for deriving the transformation pa-
rameters using such linear features.

Estimation of Transformation Parameters

The underlying conceptual basis of the developed procedure can be
summarized as follows:
1. The rotation matrix relating the reference frames of the two

point clouds is estimated first using a quaternion-based closed-
form solution; and

2. The scale and shift parameters are then estimated using a linear
mathematical model based on a modified weight matrix.

Derivation of the Rotation Matrix

The conceptual basis of the developed approach for estimating
the rotation matrix starts with the introduced quaternions proce-
dure by Horn (1987) and Guan and Zhang (2011). The proposed
approach in these publications assumes that the direction vectors
of conjugate linear features in two data sets are parallel after
applying the rotation matrix relating the reference frames of these
data sets. This parallelism can be mathematically represented by
Eq. (1)

n2i ¼ λi R2
1 n1i (1)

where n1i is the direction vector of the ith linear feature in the first
point cloud; n2i is the direction vector of the corresponding linear
feature in the second point cloud; R2

1 is the rotation matrix relating
the reference frames of the first and second point clouds; and λi is a
scale factor.

Assuming that the direction vectors (n1i and n
2
i ) are unit vectors,

the scale factor (λi) will be61. The plus sign should be used when
the two direction vectors are compatible (i.e., the two direction vec-
tors are pointing in the same direction after applying the rotation
matrix); otherwise, the negative sign should be used. The next two
subsections will introduce the quaternion-based closed-form solu-
tion for the direct estimation of the rotation matrix when dealing
with compatible and incompatible direction vectors. In this regard,
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one should note that the proposed approach for dealing with com-
patible direction vectors is identical to the one proposed by Horn
(1987) and Guan and Zhang (2011) and is only included in this pa-
per to emphasize the difference when dealing with incompatible
direction vectors as well as justifying the logic behind the developed
methodology.

Estimating the Rotation Matrix When Dealing with
Compatible Direction Vectors

As already mentioned, when dealing with one pair of conjugate lin-
ear features with compatible directions, one can introduce the con-
straint in Eq. (2) while considering the random errors associated
with the available direction vectors

n2i ¼ R2
1 n1i þ ei (2)

where n1i and n2i are unit direction vectors; and ei is the misalign-
ment error associated with the conjugate pair for the ith linear fea-
ture. Assuming there is a set of n conjugate linear features, there can
be n sets of equations of the form in Eq. (2). To estimate the
unknown rotation matrix R2

1, the least-squares adjustment is used to
minimize the sum of squared errors (SSE) for all the involved n con-
jugate linear features, as shown in Eq. (3)

min
R2
1

Xn
i¼1

eTi ei ¼ min
R2
1

Xn
i¼1

ðn2i � R2
1 n1i ÞTðn2i � R2

1 n1i Þ

¼ min
R2
1

Xn
i¼1

ðn2Ti n2i þ n1Ti n1i � 2n2Ti R2
1 n1i Þ (3)

In Eq. (3), the terms n2Ti n2Ti and n1i n
1
i are always positive as they

are the squared magnitudes of the n2i and n1i vectors, respectively.
Therefore, to minimize the SSE in Eq. (3), the rotation matrix R2

1
has to be estimated in such a way to maximize the term n2Ti R2

1 n1i .
One should note that because R2

1 n1i and n2i are pointing in the same
direction when dealing with compatible direction vectors, the term
n2Ti R2

1 n1i is always positive. This term can be formulated as the dot
product in Eq. (4) and maximized using the quaternion approach
proposed by Horn (1987), in which interested readers can find more
details. The pertinent quaternion basics to this research are briefly
explained here

max
R2
1

Xn
i¼1

n2Ti R2
1 n1i ¼ max

R2
1

Xn
i¼1

n2i :R
2
1 n1i (4)

Quaternions have one real and three imaginary elements, which
are denoted in this paper by the symbol (O_). A unit quaternion _q can
represent any rotation in 3D space by a rotation angle around an
axis, which is defined by the real and imaginary parts of the quater-
nion. According to quaternion properties, the rotation multiplication
R2
1 n1i is equivalent to the quaternion multiplication _q _n1i _q� , where

the unit quaternion _q corresponds toR2
1, and _q� is the conjugate qua-

ternion constructed by negating the imaginary part of _q. The term
_n1i is the quaternion form of n1i , which is nothing but adding a zero
as the real part and the three elements of n1i as the imaginary part,
i.e., _n1i ¼ ð0; n1i Þ. Using quaternion properties, Eq. (4) can be
rewritten as in Eq. (5), where C and C are 4� 4 matrices that con-
vert the quaternion-based multiplication to a matrix-based multipli-
cation, and the summation matrix S is a 4� 4 matrix constructed
using the components of n1i and n2i for all the available conjugate
line pairs. To maximize the term _qTS _q while maintaining the unity
constraint of a quaternion rotation as represented in Eq. (6), one

should use the Lagrange multiplier k and maximize the target
function w in Eq. (7). To derive the desired quaternion, the target
function w should be differentiated with respect to _q, as seen in Eq.
(8), which yields the expression in Eq. (9)

max
_q

Xn
i¼1

_n2i :ð _q _n1i _q�Þ ¼ max
_q

Xn
i¼1

ð _n2i _qÞ:ð _q _n1i Þ

¼ max
_q

Xn
i¼1

ðCð _n2i Þ _qÞ:ð�Cð _n1i Þ _qÞ

¼ max
_q

Xn
i¼1

_qTCð _n2i ÞT �Cð _n1i Þ _q

¼ max
_q

_qT
�Xn

i¼1

Cð _n2i ÞT �Cð _n1i Þ
�
_q

¼ max
_q

_qTS _q (5)

max
_q

_qTS _q; jj _qjj ¼ 1 (6)

max
_q

w _qð Þ ¼ _qTS _q � 2kð _qT _q � 1Þ (7)

∂w
∂ _q

¼ 2S _q � 2k _q ¼ 0 (8)

S _q ¼ k _q (9)

The expression in Eq. (9) is satisfied if and only if k and _q are
the corresponding eigenvalues and eigenvectors of the summa-
tion matrix S. In this case, the term _qTS _q would reduce to k,
because the rotation defined by _q is a unit quaternion [Eq. (10)].
Therefore, the term _qTS _q is maximized when k is the largest
eigenvalue of the summation matrix S, and eventually the
unknown quaternion _q is the eigenvector corresponding to the
largest eigenvalue. The rotation matrix R2

1 and corresponding
rotation angles (v , w , k ), if needed, can be derived from the
quaternion _q (Mikhail et al. 2001)

_qTS _q ¼ _qTk _q ¼ k _qT _q ¼ k (10)

Estimating the Rotation Matrix When Dealing with
Incompatible Direction Vectors

Existing approaches for quaternion-based estimation of the rota-
tion matrix relating two reference frames using conjugate direc-
tion vectors assume that these direction vectors are compatible
(e.g., Horn 1987; Guan and Zhang 2011). Assuming that the
direction vectors for the available conjugate pairs are consistently
incompatible (i.e., the direction vectors for all the conjugate pairs
are pointing in opposite directions following the application of
the appropriate rotation matrix), the expression in Eq. (2) would
change to the one in Eq. (11). Also, the SSE that should be mini-
mized for all the involved n conjugate linear features will take the
form in Eq. (12)

n2i ¼ �R2
1 n1i þ ei � ei ¼ n2i þ R2

1 n1i (11)
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min
R2
1

Xn
i¼1

eTi ei ¼ min
R2
1

Xn
i¼1

ðn2i þ R2
1 n1i ÞTðn2i þ R2

1 n1i Þ

¼ min
R2
1

Xn
i¼1

ðn2Ti n2i þ n1Ti n1i þ 2n2Ti R2
1 n1i Þ (12)

Thus, minimizing the SSE would require the minimization of
the term n2Ti R2

1 n1i . One should note that because R2
1 n1i and n2i are

pointing in opposite directions, the term n2Ti R2
1 n1i is always nega-

tive. Following the same derivation in the previous section, one can
establish that the quaternion _q, which corresponds to the unknown
rotation matrix, is the eigenvector corresponding to the smallest
eigenvalue of the summation matrix S, which is equivalent to
Pn
i¼1

Cð _n2i ÞTCð _n1i Þ.
In summary, the summation matrix S, whose eigenvalues/eigen-

vectors will be investigated for the derivation of the unknown rota-
tion matrix, when dealing with consistently compatible or incom-
patible direction vectors is the same. The only difference is that for
conjugate pairs with compatible direction vectors, the quaternion
rotation would be the eigenvector corresponding to largest eigen-
value. For conjugate pairs with consistently incompatible direction
vectors, the quaternion rotation would be the eigenvector that corre-
sponds to the smallest eigenvalue. This means that the derivation of
the quaternion rotation for these scenarios would follow identical
procedures with the exception of choosing two different eigenvec-
tors of the same summation matrix S. The challenge is what to do if
one is dealing with conjugate pairs of linear features that might be
partially compatible/incompatible. To address this challenge, one
could follow one of the options below:
1. One can assume that manually identified conjugate linear fea-

tures will be chosen in such a way that the direction vectors are
compatible. The advantage of this approach is that there will be
a straightforward approach for the estimation of the rotation
matrix; i.e., the approach introduced in Horn 1987 and Guan
and Zhang (2011). The disadvantage is that this approach
would add another burden during the manual identification of
conjugate features.

2. One can assume that the manually identified conjugate linear
features can be either compatible (i.e., having unified directions
for conjugate linear features in space after the alignment) or in-
compatible. The disadvantage of this option is that there has to
be a slightly more complex model to address such ambiguity.
However, the advantages would include easier implementation
of the manual identification of conjugate features and flexibility
in expanding the proposed semiautomated procedure to a fully
automated one (i.e., the operator does not need to worry about
defining unified directions for conjugate linear features). In this
research, the second option will be followed and the proposed
procedure is outlined in the next section.

Proposed Procedure

The conceptual basis of the proposed approach is using the mini-
mum number of conjugate pairs of linear features, which are
needed for the estimation of the rotation, scale, and shift parame-
ters, while entertaining possible directional ambiguities in the
derivation of the rotation matrix. Then, the estimated transforma-
tion parameters together with the remaining conjugate pairs are
used to identify the correct/valid estimate for the transformation
parameters. Once the correct solution has been identified, it will
be used to ensure the compatibility of the direction vectors for all
the conjugate linear features. Finally, all the linear features are

used to derive the transformation parameters relating the two
point clouds.

A 3D linear feature has four degrees of freedom (Roberts
1988). Therefore, a single straight line identified in two overlap-
ping point clouds allows for the estimation of four transformation
parameters, which are the two shifts across the line direction as
well as the two rotation angles defined by the line direction (i.e.,
the angles defined by the azimuth and the pitch of the line). Two
parallel linear features would allow for the estimation of the
transformation parameters except for the shift along the direction
of the linear features. Two intersecting linear features, on the
other hand, would allow for the estimation of the transformation
parameters except for the scale factor between the reference
frames of the two point clouds. Therefore, a set of two pairs of
conjugate linear features that are not coplanar is the minimum
number of required pairs for the estimation of the transformation
parameters. For accurate estimation of the transformation param-
eters, the angular deviation between the pair of lines in a given
point cloud should be as close as possible to 90°, whereas the spa-
tial separation should be as large as possible.

Having established the minimum number of conjugate linear
features for estimating the transformation parameters, one has to
focus on how to estimate the rotation matrix while considering
possible ambiguities in the direction vectors. To illustrate the ra-
tionale of the proposed procedure, one can consider the possible
scenario in Fig. 1, where n1i and n1j are two noncoplanar features
in the first point cloud and n2i and n2j are the corresponding linear
features in the second scan. In this case, given that a particular set
of direction vectors for n1i and n1j are chosen (e.g., the one shown
in the left column of Fig. 2), one can have four possible configura-
tions of direction vectors for the corresponding pair in the second
point cloud (e.g., the ones represented by the right four columns
in Fig. 2). Not knowing which one of the possible four configura-
tions is the correct one, all of them need to be considered to derive
possible solutions for the rotation matrix assuming compatible
direction vectors. Considering all these configurations would lead
to four estimates of the rotation matrix. However, a closer look at
these possible configurations will reveal the fact that the 1st and
2nd configurations as well as the 3rd and 4th configurations are
consistently incompatible. In other words, considering the pair of
linear features in the first point cloud (left column in Fig. 2) and
the line pair represented by the 1st configuration as a possible
conjugate pair, one could derive two solutions for the rotation ma-
trix that correspond to the 1st and 2nd configurations while using
the eigenvectors of the summation matrix S that correspond to the
largest and smallest eigenvalues. In a similar fashion, the solu-
tions that correspond to the 3rd and 4th configurations could be
derived while considering the eigenvectors of the summation ma-
trix resulting from associating the direction vectors in the first
point cloud and the 3rd configuration in the second point cloud. In
other words, the four possible solutions for the rotation matrix
could be derived from two summation matrices. A reduction of
the possible solutions can be achieved by selecting the direction
vectors in the first point cloud in such a way that the cross-product
of n1i and n

1
j is in the same direction of the common perpendicular

from n1i to n1j . The direction vectors in the second point cloud
should be set in the same manner. Doing so will eliminate the 3rd
and 4th configurations, because the cross-product of n2i and n2j
points in the opposite direction of the common perpendicular
from n2i to n2j for these configurations. Therefore, the two solu-
tions for the rotation matrix could be derived while considering
the eigenvectors of the summation matrix when dealing with the
matching pair in the 1st configuration.

© ASCE 04016006-5 J. Surv. Eng.
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Estimation of Scale and Shift Parameters

Now that the procedure is established for deriving the possible
solutions for the rotation matrix using the minimum number of
required conjugate line pairs, it is time to focus on the estimation
of the respective scale and shift parameters. First, start by assum-
ing that the endpoints defining conjugate lines in the two point
clouds are corresponding to each other. In this case, the mathe-
matical model relating corresponding points in terms of the

transformation parameters between the involved reference frames
is provided in Eq. (13), where Points 1 and a in the first and sec-
ond point clouds, respectively, are conjugate points along corre-
sponding linear features. Given that there is a solution for the
rotation matrix, the mathematical model would take the form in
Eq. (14). The scale and shift parameters are linearly combined as
seen in Eq. (15), which follows the traditional Gauss Markov
model [Eq. (16)]. Assuming n conjugate lines, one would have 6n
equations in four unknowns, which could be derived through
least-squares adjustment as in (Eq. 17)

Fig. 1. Minimum linear feature requirement for the estimation of the transformation parameters relating two point clouds

Point Cloud 1 Point Cloud 2

1st Configuration 2nd Configuration 3rd Configuration 4th Configuration

Point Cloud 2 Point Cloud 2 Point Cloud 2

× ×

× ×

×

Fig. 2. Possible matching configurations between two pairs of conjugate linear features that are not coplanar

1 

2 

1 

2 

b 

a 

3D Helmert Transformation 

Fig. 3. Displacement vector for conjugate line segments with noncor-
responding endpoints

X 

Y
Z

UV

W

Fig. 4. Coordinate system for the point cloud (X, Y, Z) and the line
local coordinate system (U, V,W)

X

Y
Z

Fig. 5. Simulated linear features

Table 1. The 3D-Helmert Transformation Parameters Relating the
Reference Frames for the Simulated Data Set

Parameter Value

TXðmÞ 26
TYðmÞ −73
TZðmÞ −139
S 2.5
x

�
34

f
�

−68
j

�
155
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(13)

where xT yT zT
� �T

is the shift vector between the reference
frames of the two point clouds; S is the scale factor;
ex ey ey

� �T
is the random noise vector contaminating the

observed point coordinates; and s 2
oP

�1 is the variance-covariance
matrix of the random noise vector
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2
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5 (15)

Fig. 6. (a) Subsampled image-based point clouds that have been generated from UAV images; (b) airborne laser data over the test site (Real Data
Set 1)

Fig. 7. Subsampled point clouds that have been generated from: (a) a handheld Canon T3 camera; (b) a Faro Focus 3D laser scanner (Real Data
Set 2)

Fig. 8. (a) Scan 1; (b) Scan 2 from a Faro Focus 3D scanner (Real Data Set 3)
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y6n�1 ¼ A6n�4 x4�1 þ e6n�1 and e � ð0; s 2
oP

�1
6n�6nÞ (16)

x̂ ¼ ATPAð Þ�1
ATPy
� �

(17)

Unfortunately, for the application at hand, conjugate direction vec-
tors in the two point clouds are represented by their endpoints, which
are not corresponding to each other. For example, one can consider
the direction vector n1i in the first point cloud, which is represented by
the endpoints 1 and 2, and the corresponding direction vector n2i in the
second point cloud, which is represented by the endpoints a and b,
where 1, 2 and a, b are not corresponding to each other (refer to Fig.
3). In this case, the mathematical model relating these points can be
represented by Eq. (18). The main difference between Eqs. (13) and

(18) is the displacement vector d ¼ dx dy dz
� �T

. As seen in
Fig. 3, the displacement vector is along the direction vector n2i .
Eq. (18) can be reparameterized to the form in Eq. (19). The
miss-closure vector in Eq. (19) ðex; ey; ezÞT has two components.

The first component ðex; ey; ezÞT is of a random nature, whereas

the second component ðdx; dy; dzÞT is not random and is the result
of dealing with noncorresponding points along conjugate linear
features. Previous research has shown that the nonrandom com-
ponent of the miss-closure vector can be eliminated by modify-
ing the weight matrix according to Eq. (20) (Renaudin et al.
2011). Modifying the weight matrix will allow for the estima-
tion of the transformation parameters in a similar manner to Eq.
(17) after replacing the original weight matrix (P) with the
modified one (�P). Refer to Renaudin et al. (2011) and Kersting
et al. (2012) for more details regarding the underlying mathe-
matical details of the weight modification approach
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�P
dx
dy
dz

2
4

3
5 ¼ 0 (20)

The weight-modification process is accomplished as follows:
1. For each of the direction vectors ðn2i Þ, one can derive a rotation

matrix, RUVW
XYZ , which transforms the coordinates of a point

from the reference frame of the second point cloud to a local
coordinate system ðU; V; WÞ, as illustrated in Fig. 4, where
theU-axis is along the line direction.

2. The original weight matrix (PXYZ) is transformed from the XYZ
coordinate system to the line local coordinate system (PUVW)
according to the law of error propagation, as shown in Eq. (21)

PUVW ¼ RUVW
XYZ PXYZRXYZ

UVW (21)

3. The weight matrix (PUVW) is modified according to Eq. (22).
This modification can be conceptually explained as assigning a
zero weight to discrepancies along the line direction

P
0
UVW ¼

0 0 0
0 PV PVW

0 PWV PW

2
4

3
5 (22)

4. Finally, the modified weight matrix can be transformed from the
line local coordinate system to the reference frame of the second
point cloud according to Eq. (23). This weight matrix will elimi-
nate the impact of the displacement vector (~d) from the miss-clo-
sure vector ðex; ey; ezÞT . Using such modified weight matrix,
one could prove that the condition in Eq. (20) is satisfied

P
0
XYZ ¼ RXYZ

UVW P
0
UVW RUVW

XYZ (23)

Summary

In summary, the proposed procedure for the estimation of the trans-
formation parameters in this work proceeds as follows:

Fig. 9. (a) Scan 1; (b) Scan 2 from the Faro Focus 3D scanner (Real Data Set 4)

Table 2. Number of Conjugate Line Pairs for the Three Real Data Sets

Real data set Number of line pairs

1 7
2 8
3 10
4 10
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1. Pick two pairs of conjugate linear features from the two point
clouds. The linear features in a given point cloud should have
large angular deviation (i.e., as close as possible to 90°) as well
as spatial separation to ensure high-quality estimation of the
transformation parameters.

2. Use these pairs to derive the two possible solutions for the rota-
tion matrix relating the two point clouds as explained
previously.

3. For each of the estimated rotation matrices, derive the corre-
sponding scale and shift parameters as shown previously.

4. Using the estimated transformation parameters and the
remaining pairs of conjugate linear features, it can be decided
which one of these transformation parameters is the valid one.
To do so, transform the endpoints of the linear features in the
first point cloud to the reference frame of the second one. The
valid solution will be the one that makes the linear features in
the second reference frame and their transformed correspond-
ing ones collinear for all the lines in the data set in question.
The collinearity of the line segments in the second point cloud
and the transformed ones from the first cloud will be checked
through their spatial separation and angular deviation. More
specifically, the spatial separation should be almost zero.
whereas the angular deviation should be either close to 0° or
180°.

5. Having decided the valid solution, one proceeds by adjusting
the direction vectors of the linear features to ensure that they
are compatible. More specifically, after ensuring the collinear-
ity of the linear features in the second reference frame and their
transformed corresponding ones from the first point cloud, their
direction vectors are adjusted to ensure that they are pointing in
the same direction. In other words, if the angular deviation is
almost 180°, the direction vector of one of the segments is
inverted.

6. Using all the linear features, one estimates the rotation matrix
according to the established procedure for the derivation of
rotation matrix. Then, the estimated rotation matrix is used to
derive the scale and shift parameters.

7. Finally, the ICPatch (Habib et al. 2010) is used for the fine
registration between the involved point clouds.

Experimental Results and Discussions

Experimental results from simulated and real data sets have been
conducted to investigate the capability of the proposed procedure in
evaluating the scale, shift, and rotation parameters relating the refer-
ence frames of such data. The following subsections provide a brief
overview of the utilized data sets, the estimated transformation pa-
rameters, and the visualization of the outcome of the registration
process.

Data Set Description

Simulated Data Set
A set of five linear features have been simulated to emulate those
arising from a gable roof building (Fig. 5). The longest line in this
data set is less than 1 m. The linear features are represented by their
endpoints. Then, a set of predefined 3D-Helmert transformation pa-
rameters (Table 1) is applied to these endpoints to generate the cor-
responding linear features in another reference frame. The end-
points of the transformed linear features are then manipulated to
produce another set of endpoints to ensure that corresponding linear
features are not represented by conjugate points. Finally, the order
of the endpoints has been randomly changed to ensure that the linear
features are not represented by compatible direction vectors.

Fig. 10. Manually identified linear features in: (a) Data Set 1; (b) Data Set 2; (c) Data Set 3; (d) Data Set 4; the line pairs that have been used for
the initial estimation of the transformation parameters are shown as solid lines; additional conjugate line pairs are displayed as dashed lines
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Real Data Sets
The linear features for the real data sets have been derived from air-
borne and terrestrial passive and active sensors. Two test sites are
involved in this research. The first one is at the vicinity of a building
with a complex roof structure. The second one is around an electri-
cal substation with sufficient polelike structures. More specifically,
three different data sets (Data Sets 1–3) arising from the building
and one data set (Data Set 4) arising from the electrical substation
have been acquired. The following paragraphs provide the details
pertaining to those data sets.

Data Set 1 is composed of two point clouds, which are generated
from an image-based unmanned aerial vehicle (UAV) platform and
an airborne laser scanner. The utilized UAV platform is the DJI
Phantom 2 (DJI, Shenzhen China) equipped with a GoPro 3 camera
(GoPro, San Mateo, California), which is used to capture 27
images. A total of 14 million points have been generated through the
proposed approach for automated recovery of the image EOPs as
well as the dense matching procedure. One should note that a local
reference frame with an arbitrary scale factor has been established
by the automated EOP recovery procedure. To reduce the processing
time for the planar feature segmentation and derivation of linear fea-
tures through an intersection procedure, the image-based point cloud
has been subsampled to 100,000 points. The second point cloud in
this data set is acquired by an Optech ALTM 3100 airborne laser
scanning system (Teledyne Optech, Vaughan, Ontario, Canada). A
total of 78,000 points that cover the building in question have been
cropped from the airborne data. The average point spacing of the air-
borne data is about 0.75 m. Fig. 6 illustrates the subsampled image-
based point cloud and the airborne laser data.

Data Set 2 has been generated from terrestrial platforms viewing
some of the building facades. The first point cloud is generated
from 21 digital images that were captured by a handheld Canon T3
camera (Canon Canada, Mississauga, Ontario, Canada). A total of 8
million points have been generated from the dense matching proce-
dure. Similar to the first data set, these points have been subsampled
to 60,000 points prior to the segmentation and linear feature deriva-
tion procedure. The second point cloud, which is composed of
1,140,000 points, is acquired by a Faro Focus 3D terrestrial laser
scanner (Faro Technologies, Lake Mary, Florida). This data set is
acquired to have a 2 cm resolution at a 15-m distance. The laser data
is subsampled to 110,000 points. Fig. 7 illustrates the subsampled
image-based and laser scanner point clouds.

Data Set 3 includes two point clouds acquired by the Faro Focus
3D scanner at two different locations. The main objective of this data
set is to check the deviation of the estimated scale from the expected
unit value. Fig. 8 illustrates the two point clouds, which are comprised
of 360,000 and 1,140,000 points. To reduce the processing time for
point cloud segmentation and linear feature extraction, the two scans
are subsampled to 36,000 and 11,000 points, respectively.

Data Set 4 includes two point clouds acquired by the Faro Focus
3D scanner at two different locations within an electrical substation.
Similar to Data Set 3, the main objective of this data set is to check

the deviation of the estimated scale from the expected unit value.
Fig. 9 illustrates these two point clouds, which are comprised of 11
million and 12 million points. To reduce the processing time for lin-
ear feature extraction, the two scans are subsampled to 55,000 and
60,000 points, respectively.

For Real Data Sets 1–3, the linear features have been extracted
through the intersection of automatically segmented neighboring
planar regions. For Real Data Set 4, the linear features have been
extracted through direct region-growing segmentation. Conjugate
linear features are then manually identified. Table 2 summarizes the
number of manually identified conjugate linear features from each
of the real data sets. Sketches illustrating the point clouds and
extracted linear features from the different data sets are presented in
Fig. 10, including the utilized line pairs for the initial estimation of
the transformation parameters.

Table 3. Estimated Transformation Parameters from the Simulated Data
Set with Different Noise Levels

Noise
level (m) TX mð Þ TY mð Þ TZ mð Þ S x

�
f

�
j

�

0.00 26 −73 139 2.50 34.00 −68.00 155.00
0.01 25.97 −73.01 139.02 2.45 33.78 −68.23 154.31
0.02 26.03 −72.98 138.97 2.46 33.79 −67.06 154.99
0.03 25.97 −73.01 139.02 2.52 34.29 −68.83 156.43
0.04 25.95 −72.98 139.01 2.51 36.88 −67.45 156.33
0.05 26.05 −72.97 138.95 2.42 32.07 −66.54 156.28
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Fig. 11. (a) Rotation errors; (b) translation errors; (c) scale errors for
the estimated transformation parameters from the simulated data sets
with different noise levels
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Results and Discussions

Simulated Data Set
The main objective of the simulated data set is to evaluate the esti-
mated transformation parameters after adding noise with different
magnitudes to the simulated endpoints of the linear features. Table
3 provides the estimated transformation parameters for these
experiments. More specifically, the transformation parameters are
derived through the proposed closed-form coarse-registration
approach using the five conjugate linear features. As expected, in
the absence of noise, the estimated transformation parameters are
identical to those used to simulate the second data set. Fig. 11 illus-
trates the absolute values for the deviations between the estimated
parameters and the corresponding true values for the different noise
levels (i.e., noise with standard deviations from 0 to 0.05 m). As

shown in Fig. 11, themaximum absolute error values for the transla-
tion, rotation angles, and scale factor are less than 0.0 5 m, 4°, and
0.1, respectively. Fig. 12 presents two examples of the postregistra-
tion alignment of the linear feature results, in which the Gaussian
noise levels are 0.02 and 0.05 m, respectively. Based on these
results, one can conclude that accurate coarse registration is
achieved from the simulated data set, and the estimated transforma-
tion parameters are not significantly affected by the noise level in
the endpoint coordinates. In this simulated data set, the length of lin-
ear features is similar to the size of the test region. Because the
length of linear features is only important for determining the direc-
tion vectors, linear features with different lengths (e.g., shorter seg-
ments) would not affect the result of coarse registration. In other
words, as long as the length of the linear features is sufficient for
recovering the line direction vector, the coarse registration would

Fig. 12. Postregistration aligned linear features from the simulated data set with noise level of: (a) 0.02 m; (b) 0.05 m; the original linear features are
presented in solid lines, and the aligned linear features with different levels of Gaussian noise are shown as dashed lines

Table 4. Estimated Transformation Parameters from Real Data Sets 1–4

Data Parameter source TX mð Þ TYðmÞ TZ mð Þ S x
�

f
�

j
�

1 Initial 700121.46 5661856.18 1141.02 22.62 3.15 −3.72 111.02
All lines 700121.11 5661852.73 1142.76 25.25 3.16 −6.06 111.62
ICPatch 700121.25 5661851.68 1141.74 25.39 4.58 −5.52 111.74

2 Initial −26.38 671.89 359.87 6.82 130.49 −62.31 34.41
All lines −19.46 680.02 364.34 4.38 125.97 −66.13 35.53
ICPatch −19.12 680.00 364.21 4.37 127.04 −65.50 34.98

3 Initial −5.18 −12.58 −10.55 1.01 −0.04 −3.23 −52.36
All lines −4.98 −12.54 −10.07 1.00 0.22 −2.49 −52.42
ICPatch −4.80 −12.61 −9.96 1.00 0.43 −2.29 −52.21

4 Initial 1.99 −8.80 0.06 0.98 −0.13 −0.02 2.43
All lines 1.92 −9.05 −0.06 1.00 0.15 0.02 2.39
ICPatch 1.93 −9.00 −0.03 1.00 0.45 −0.22 2.51

Table 5. Differences among the Estimated Transformation Parameters for All Real Data Sets

Parameters

Absolute difference between
initial and line-based

transformation parameters

Absolute difference between
initial and ICPatch-based
transformation parameters

Absolute difference between
line-based and ICPatch-based
transformation parameters

Maximum Minimum Maximum Minimum Maximum Minimum

Dx
�

4.52 0.11 3.45 0.47 1.32 0.21
Df

�
3.82 0.04 3.19 0.20 0.63 0.20

Dj
�

1.12 0.04 0.72 0.08 0.55 0.04
DS 2.63 0.01 2.77 0.01 0.14 0
DTXðmÞ 6.92 0.07 7.26 0.06 0.18 0.01
DTYðmÞ 8.13 0.04 8.11 0.20 1.05 0.02
DTZðmÞ 4.47 0.12 4.34 0.03 1.02 0.03
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provide comparable values for the transformation parameters. The
robustness against length is attributed to the fact that the weights
only rely on the direction of the line and not its length.

Real Data Sets
Table 4 reports the estimated transformation parameters from the
different stages of the proposed approach.More specifically, the first
row for each data set represents the estimated transformation param-
eters from the initial conjugate pair, which was used to resolve the
directional ambiguity among conjugate linear features (refer to the
solid lines in Fig. 10). The second row, on the other hand, shows
the derived transformation parameters using all the conjugate linear
pairs. Finally, the third row provides the estimated parameters from
the ICPatch procedure. As shown in Table 5, which shows the differ-
ences between the estimated transformation parameters in Table 4,
one can observe the small differences between the line-based coarse
registration and the ICPatch-based fine registration. Moreover, the
first row in Table 4 for each of the data sets shows that even using a
single pair of noncoplanar linear features is capable of providing a
reasonable estimate of the transformation parameters. The maxi-
mum translation difference between the two-line–based registration
and fine registration is 8.13 m, whereas the maximum rotation angle
error is 4.52°. However, because such an initial estimation is only
used to ensure the compatibility of the direction vectors for the con-
jugate linear features, these deviations will not affect the reliability
of the final estimation of the transformation parameters. Looking at
the reported results in Table 4, one can observe that the estimated
scale factors for the third and the fourth data sets are almost unity,
which is another indication of the ability of the proposed procedure
for evaluating the transformation parameters. As an independent

check, additional check lines in the real data sets are used to evaluate
the coarse-registration quality. The derived overall weighted resid-
uals for the check lines (this measure shows how well conjugate
lines, which have not been used for parameter estimation, are
aligned) are listed in Table 6, in which it can be seen that the coarse
registration resulted in good coalignment of the check lines. More
specifically, the overall weighted residuals are derived through
the modified weight matrix as presented in the methodology sec-
tion, which eliminates discrepancies along the line direction.

For qualitative evaluation of the outcome from the registration
process, Figs. 13–16 show cross sections of the aligned data sets af-
ter the coarse and fine registration for the four real data sets. It is evi-
dent from these figures that the two point clouds for the different
real data sets are roughly aligned using the line-based transforma-
tion parameters, whereas more accurate alignment is achieved using
the derived parameters from the ICPatch process. These results
demonstrate that the line-based transformation parameters are more
than sufficient for the coarse registration.

Conclusions and Recommendations for FutureWork

This paper outlined a closed-form solution for the coarse registration
of overlapping point clouds using linear features, which have been
automatically extracted and manually matched in these point clouds.
Corresponding linear features within the point clouds are not assumed
to be represented by conjugate points. Linear features have been used
for solving the coarse registration problem for several reasons.
Among them, the possibility of deriving linear features from point
clouds covering man-made environments as well as the possibility of
determining the transformation parameters using only two noncopla-
nar linear features in each point cloud are the key advantages. The uti-
lization of quaternions allowed for a closed-form evaluation of the
rotation matrix, which in turn permitted a linear solution to the scale
and shift parameters relating the reference frames of the point clouds.
However, the fact that there might be directional ambiguities between
corresponding linear features in the two point clouds will lead to hav-
ing more than one plausible estimate for the rotation matrix. To over-
come such a problem, the proposed procedure started with using the

Fig. 13. Registration of Data Set 1: (a) coarse alignment using the line-based transformation parameters; (b) fine alignment using the ICPatch-based
transformation parameters (the airborne laser scanning (ALS) data are shown in black, and the image-based point cloud is visualized in gray)

Table 6. Derived Overall Residuals for the Check Lines in Data Sets 1–4

Data set Number of check lines Overall residual (m)

Real Data Set 1 2 0.27
Real Data Set 2 2 0.13
Real Data Set 3 2 0.07
Real Data Set 4 2 0.04
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minimum number of required linear features for the estimation of the
transformation parameters (i.e., two noncoplanar linear features in
each point cloud) while allowing for multiple directional correspond-
ences among the direction vectors for these linear features. This con-
sideration leads to multiple solutions for the transformation parame-
ters, which are then used for resolving the directional ambiguities
between corresponding linear features. Then, all the available

linear features are simultaneously used in the same manner to esti-
mate the rotation matrix as well as scale and shift parameters. The
proposed procedure has been tested with several simulated and real
data sets, which verified the feasibility of the proposed procedure
in terms of solving the registration problem in the presence of noisy
measurements and providing reliable coarse alignment for a suc-
cessful fine registration.

Fig. 15. Registration of Data Set 3: (a) coarse alignment using the line-based transformation parameters; (b) fine alignment using the ICPatch-based
transformation parameters (the first TLS point cloud is shown in black and the second TLS point cloud is visualized in gray)

Fig. 16. Registration of Data Set 4: (a) coarse alignment using the line-based transformation parameters; (b) fine alignment using the ICPatch-based
transformation parameters (the first TLS point cloud is shown in black and the second TLS point cloud is visualized in gray)

Fig. 14. Registration of Data Set 2: (a) coarse alignment using the line-based transformation parameters; b) fine alignment using the ICPatch-based
transformation parameters (the terrestrial laser scanning (TLS) data are shown in black and the image-based point cloud is visualized in gray)
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The main limitation of the proposed approach is the reliance on
manual identification of corresponding linear features in the avail-
able point clouds. However, this could be achieved through a sim-
ply developed interactive visualization environment for the identifi-
cation of these features among those that have been automatically
extracted from the automated segmentation and intersection of
neighboring planar features. The fact that the operator does not
need to worry about ensuring the directional compatibility of the
direction vectors would make this manual process even simpler.
Having said that, current and future research will be focusing on the
automated identification of corresponding linear features within the
point clouds. A RANSAC procedure constrained by invariant char-
acteristics relating conjugate linear features (e.g., similar angular
deviations for any point clouds as well as similar spatial separation
for point clouds sharing the same scale) would be used as the start-
ing point for this automated procedure. In addition, the utilization of
more than a single pair of linear features to reduce the number of
required RANSAC trials also will be investigated. Moreover, future
work will focus on the registration of more than two scans simulta-
neously while ensuring some sort of compatibility constraints
among the transformation parameters relating multiple scans.
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